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I. INTRODUCTTON

In finite-difference calculations of transient ground

motion, it has proven useful to incorporate artificial vis-

cosity as a means of smoothing out shocks and reducing the

numerical, noise they generate. Noise may also be generated

by the transition between loading and unloading in a hyster-

etic solid, or by the appearance of a tensile crack in a

material element, should the constitutive law include some

criterion for the formation of cracks normal to the direc-

tion of the stress. In the numerical analysis of such

materials, there is a possibility that noise generated by

shocks, stress reversals, or cracks could cause subsequent

spurious cracking and serious deviation from the correct

response. Artificial viscosity may alleviate this problem,

but must be used with caution so it does not cause deviations

from the correct response.

In this report an exact analytic solution is derived for

the propagation and reflection of a particular stress pulse

in a hysteretic, tensile-cracking material. Stress histo-

ries and crack locations are presented in a form convenient

for comparison with numerical code output. The solution

thus may be used as a check on code calculations and as a

tool for the selection of the optimum artificial viscosity.

The problem solved is for a material with no viscosity

and consequently no shock smoothing. However, in order to

clarify certain features of the solution, it will prove use-

ful to regard it in a sense as the limit of a sequence of

solutions for materials with smaller and smaller viscosities.

* Two different possible versions of the tensile cracking

model will be included. In the first one, cracks form when-

ever the stress exceeds a tensile cutoff, regardless of the

duration of the tensile pu.lse. In the second, the tensile

3



cutoff stress must be reached and in addition must persist

for a finite (but very short) time, i.e., the tensile impulse

must nrl-. vanish. As applied to the present solution, these

models differ only in that a tensile spike can cause a crack

in the first instance but has no effect on cracking in the

second. However, this distinction will be seen to cause a

marked difference in the resulting crack patterns.

The loading analyzed is a sharp-fronted triangular pres-

sure pulse applied to one face (the loaded face) of a free

slab of biline~ar material. During the initial propagation
of the pulse through the slab toward the other face (the

free face), it remains compressive but its shape changes

due to the hysteresis in the stress-strain law. After

reflection the stress between the free face and the ref lec-

ted wave front becomes tensile, with the maximum tensile

stress (at the wave front) increasing with time. When this

maximum reaches the tensile cutoff stress, a crack will form

at the wave front regardless of which cracking criterion is

used, and a finite spall layer will separate from the rest

of the slab.

What happens next depends on whi.ch cracking model is

employed. For the simple tensile cutoff criterion, a con-

tinuously crar-ked region develops in the main part of the

slab behind the reflected wave front as it cont..inues to

propagate back toward the: loaded face. In the example to

be worked out, continuous cracking proceeds all the way

back to the loaded face, leaving only the originally

spalled layer intact.

If a finite but very small tensile impulse is required

for cracking, then after the first crack forms, a discrete

set of cracks appears. The reason is that the formation

of the Zirst crack leaves a tensile spike at the reflected
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wave front. As mentioned above, the spike can contribute to

cracking in the simple tensile cutoff model but has no effect

in the finite impulse mclel. In the numerical example to be

presented, three discrete cracks form, leaving a slab between

the last crack and the loaded face containing a stress spike

that reflects back and forth.

Some of the events just described are clearly beyond the
capability of any numerical code to predict exactly. As is

well known, the closest (and most useful) possible numerical

representation of a sharp-fronted pulse is one with the front
smeared--by artificial viscosity--over several zones. The

continuously cracked region could at best be modeled as a

sequence of adjacent zones, each with a tensile crack. The

best approximation of a spike would be a pulse several zones
wide. The problem thus provides a severe test for any code,

but not an unreasonable one, because the ground motion prob-
lems of greatest interest contain at least some of these

difficult features.

5I
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II. TENSILE CRACKING IN AN ELASTIC MATERIAL

Before solving the problems posed for bilinear media, it

will be useful to discuss several related problems in elastic

media. The need for this discussion stems from the fact that

in bilinear media only sharp-fronted pulses can be analyzed

in closed form, while in elastic media those with finite rise

times can be treatel exactly by the method of images. Finite

rise times are of interest because the cracking process caused

by a sharp-fronted pulse will be regarded as the limit of a

sequence of processes caused by pulses with finite but shorter

and shorter rise times. Because one effect of viscosity is to

smooth out sho-Is, letting the rise time tend to zero models

in a crude way the effect of letting viscosity tend to zero.

(The correspondence is not exact because the triangular pulse

shapes to be considered will not be rounded off as those in a

viscous solid would be. However, it may be argued that the

limit is the same.)

Consider then the reflection of the triangular stress

pulse shown in Figure la. It impinges from the left on a

free surface located at the vertical axis. Compressive

stresses are plotted upward. The stresses at. three succes-

sive instants of time are shown as the solid lines labeled

1, 2, and 3. These are obtained by superposing the rightward

propagating incident pulse with its negative images propagat-

ing to the left. At instant 3 the stress has reached the ten-

sile cutoff and a crack forms at that location, labeled C. The

crack will form regardless of whether the simple tensile cut-

of f criterion or t'ne small but finite tensile impulse criter-

ion is invoked, although in the latter case it would form

slightly later. The picture at instant 3 is repeated in Fig-

ure lb, but the spalled material to the right of the crack

has been removed to emphasize that at later times the left-

hand side of the crack acts as a new reflecting surface.

6
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To see whai'L happens next, suppose for the moment that no

new cracks will form. The stress at later times would then

be the superposition of three triangular pulsen:

1. The part of the incident wave that was not

removed with the spall layer, propagating to

the right (QAB),

2. The negative image of QAB, propaguting to the

left (ODE), and

3. The part of the original negative image pulse

that was not removed with the spall layer,

propagating to the left (OFG).

As represented by the shading in Figure lb, at the later time

4 the wave would contain a narrow triangular tensile pulse of

height equal to the tensile cutoff stress propagating to the

left. If the simple tensile cracking criterion had been main-

tained, this pulse would have caused a second crack to form
immeýdiate!lyftrtefsto. In fact, a continuously

cracked region would form. on the other hand, if the finite

impulse criterion had been in force, this narrow pulse might

or might not cause cracking, depending on its width. If it

were not wide enough, then a second crack would not form

until later, and it would be a finite distance from the first.

Figure 2 shows the same sequence for an incident pulse

with a shorter rise time. By comparison, we see that the

first crack forms at the same place and that the narrow ten-

sile pulse has the same height but less width. Figure 3 shows

the limit as rise time tends to zero. The narrow tensile pulse

has become a spike with no impulse and could not contribute

to cracking by the finite impulse criterion; however, it still

could by the simple tensile cutoff criterion. Thus the solid

curve labeled 4 would actually apply in the former case, and an

instant later a second crack would form since the tensile

impulse would become finite due to the broadened tensile pulse

that follows. On the other hand, under the simple tensile

8
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cutoff criterion curve 4 would never develop; rather the tensile

spike would cause a continuous crac-ked zone to form between the

first crack and the reflected wave front.

Figure 4a shows in more detail the development of the con-

tinuously cracked region under the simple tensile cutoff cri-

terion for the incident pulse with finite rise time of Figure 2a.

The picture at time 3 when the first crack has just formed has

been repeated. At the later time 4, the cracking has progressed
to a point determined by the superposition of the decaying tail

of the incident pulse and the rising front of reflection of the

original incident pulse. All parts of either pulse between the

current crack location and the first crack become irrelevant;

in particular, the image pulse ODE never influences the future

cracking (it does, however, contribute to the stresses in the

spalled layer between the first crack arid the original free

surface). In effect, the height of the rising front of the

reflected pulse is progressively eroded until slightly after

time 5 when it passes the end of the incident pulse. At later

times such as 6, all that remains is a narrow triangular tensile

pulse with height equal to the tensile cutoff propagating to

the left.

Figure 4b shows the same sequence for the sharp-fronted

incident pulse of Figure 3a, when the simple tensile cutoff

criterion is used. Continuous cracking ceases at time 5, and

at the typical later time 6 all that remains is a leftward

propagating tensile spike equal to the tensile cutoff.

The foregoing discussion has shown how a tensile spike is

formed after the first crack in a linear medium and how the

spike influences subsequent cracking. Both the spike formation $

and its influence will be similar for a bilinear medium, and

this will be analyzed in the next two sections.



a)

zon IFO

b)

..Cra::ed.
zone

Figure 4. Development of the continuously cracked zone in
an elastic solid with no tensile impulse require-
ment. (a) finite rise time, (b) sharp-fronted
pulse.
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III. FORMULATION OF THE PROBLEM FOR A BILINEAR MEDIUM

A slab of material occupies the region O<x<k, -- <(y,z)<-.

The face x=O is uniformly loaded by a sharp-fronted triangular

pressure pulse

0, t<0
p(t) =-(0,t)= P(()-t/t 0<t<t

0 000, t>t,

where o(x,t) is the stress (taken positive in tension), p0
is the peak applied pressure, and to the duration of the

loading pulse. The material is a "bilinear" solid with

stress-strain law

a(x,t) = E£ 9(x,t) (2a)

on initial loading, and

a(x,t) = am(x) - Euem(x) - E(x,t)] (2b)

on unloading or reloading below the previous maximum compres-
,

sive stress. Here E£ and E >E are the loading and unloading
u 9.

moduli in plane strain, e is the strain, and cm (x)<0 and

am(x)=E£Cm(x) are the most compressive strain ard stress

atL;ained at a given x. The material is assumed to have a

tensile cutoff stress atco. Both the simple tension and

the finite tensile impulse criteria for cracking will be

considered.

The equation of motion is

V2
-.2 (3)

In the sequel, "reloading" will mean "reloading below the
previous maximum compressive stress."

13



El
where p is the density and u the displacement in the x-direc-
tion. With the assumption of small displacements and strains,

the density may be taken as constant, there is no distinction
between Lagrangian and Eulerian coordinates, and the strain-

displacement relation is

u- (4)

An ordinary wave equation with wave speed c£ = (Ez/P)½

governs the displacement u during initial loading, as can be
shown by combining Eqs. (2a), (3) and (4). For unloading or
reloading, substituting Eq. (4) into Eq. (2b) and that

result into Eq. (3) yields the inhomogeneous wave equatirn

D2u 1 au 2 ( 1 1 jdam (5)
2 Cu2 at 2 -E£ EuJdx

where cu = (Eu/p)½ is the unloading wave speed. The loading-
unloading boundary (in the x-t plane) is in general impossible

to locate analytically. However, for the sharp-fronted loading

of Eq. (1), it is trivial: loading occurs only at the leading
wave front before reflection, which propagates at speed

cz < cu. In every finite disturbed region of the x-t plane,
only unloading or reloading occurs, Eq. (5) applies, and c

is the characteristic speed.

The general solution of Eq. (5) is

u(x,t) f(t-x/cu) + g(t+X/Cu) + (-L E-l)Iox (ý)dE (6)

and from Eqs. (2) and (4) the corresponding stress is

E
E(xt) u f' (t-x/c g' (t+x/c (7)

where primes denote differentiation with respect to the argu-
ment. The rest of the problem is to find expressions for the

14



as Yet arbitrary functions f, g, and amp arnd concurrently
to determine when arnd where cracking Occurs.



IV. SOLUTION

The x-t plane (or characteristic plane) is shown in

Figure 5 for a slab of thickness 2.5 czt°0 and for c u /c. 2.

Line OBC is the loading front propagating at speed c£.

Below this line the material is at rest and above it the

material is unloading or reloading, so Eqs. (6) and (7)

apply. The plane is subdivided by certain critical charac-

teristics t+x/cu = const., and the functional form of the

solution will be different in each region.

We begin with region OAB, bounded by the loading wave

front, the loaded portion of the time-axis, and the wave front

moving to the right at speed cu from the tail of the loading

pulse. Here the following conditions must hold:

1. The stress at the loaded end must equal the

negative of the applied pressure,

a(0,t) = -p(t) . (8)

2. The stress along the leading wave front must

be the maximum compressive stress,

a(c t,t) = am (czt). (9)

3. The displacement along the leading wavefront

must vanish,

u(c kt,t) = 0 . (10)

By substituting Eqs. (6) and (7) for u and a into Eqs. (8-10),
differentiating (10) with respect to t, and rearranging, we

find

16
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3.5

3.0

2.0

20

0.6

0 0. 1. 1.52.02.5

Figure 5. Characteristic plane for I = 2.5 c t

C ct= 2, and for cracking by the

simple tensile cutoff criterion.
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f'[t(l-y)] - g'[t(l+y)] + h(t) = 0

f' [t (1-y)]+ _+-y g'[t(l+Y)] + h(t) 0 (11)
Y (11)

f'(t) - g' (t) = s(t) ,

where y = cI/Cu, h(t) = cu am (c t)/E u, and s(t) = cuP(t)/E .

Since s(t) is a linear function of t, viz.,

s (t) =Up I• t

the above system of equations can easily be solved by assuming

that each of the unknown functions f', g', and h is a linear
function of its argument and equating coefficients of the con-

stant and linear terms on each side of the equations. The

results for region OAB are thus

Eug' (t) 1- -) _ 2(12)
Zuo 20.47 t

E Uf' (t) (1-'2u - 1~- (13))
cuP° 4y 0 413o

'a (x) xo = 1 - 2 c t ,(1 4 )

and from Eq. (7),

a (x,t) 1 - l+y x (15)
p0  to 2 c t(

Next consider region ABD. Because the backward charac-

teristics t+x/c = const. are common between this region and
OAB, g (t) will still be given by Eq. (12). A new formula is

needed for f' (t), and it follows from the condition that

u(0,t) = 0. From Eqs. (7) and (12) this yields for region AED,

18



EufIt) 4 t-(16)

_ a(x,t) = (1-Y) 2x . (17)

Note that the stress-free surface condition gave f' (t) - g' (t).

Considering that the stress is proportional to the difference

of these functions [see Eq. (7)], the method of images could

have been used to obtain f (t) and the stress, just as in the
linedr problem. The difference here is that the incident por-
tion, which for this reflection is the backward propagating
function g (t+x/cu ), could not have been found simply by tracing

backwards to the initial loading as in the linear problem.

In region BCED, the function f (t) will still be given
by Eq. (16) since the forward characteristics t-x/cu = const.
are common between this region and ABD. Conditions (9) and

(10) must still apply, and may be used in similar fashion
to obtain for region BCED

Eug'd(t) (1-Y)2 [1- ( 2- t (18)
cup 2y(l+y) 2(1+y)t

O(x't) -p0  - (Ix [ -,L (+Y flx (l-Li2
0+y (-+y)t 0  (l+y)c t J-i_:i 1 -sk+') '•t

p0  l+y 2c tO

At this stage the maximum am (x) has been determined for

the entire slab and only f' and g' need be calculated in the
remaining regions. These can easily be found at each stage

by imposing a stress-free boundary condition at either end
or on both faces of any cracks that form, provided that the
tensile spike caused by cracking is included properly.

19
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........................--- I

The incident pulse first reflects from the free surface

into region CFG of Figure 5. The function f' is the same as

for the adjacent region BCED [see Eq. (16)), and g' follows

as a simple reflection of f' according to the stress-free

condition at x = - 2.5 cZt0 and P.q. (7):

Eug'(t) (1-Y) 2(t-2t/cu

cup 0  0y (19)

_ o(xt) = _ (1-y)_(A-x)
PO 2c~t 0

Note that just after this first reflection, the stress is
tensile, independent of time, and linearly increasing with
distance from the end, just as in the linear solid of

Figure 3a.

The tensile cutoff stress a tco is taken to be a tco -

PO/16. With X = 2.5 cZt 0 and Y = 1/2, Eq. (19) shows that
the first crack occurs at x = 2 c~to, and kno4,ing the slopes
of the characteristics in Figure 5 we find the time of

cracking corresponding to point F to be 2.75 to

•tress profiles are shown in Figure 6 up to this time.
The vertical positions agree with the time scale of Figure 5

and the horizontal scales are the same so the plots may be

overlain.

The subsequent behavior depends on whether a finite

impulse is required for cracking. First we suppose it is

not, so that the tensile spike just ahead of the first
crack can cause continuous cracking. Cracking will begin
at x = 2 c t° and propagate to the left along FE in Figure 5

with speed cu. The problem now is to determine when crack-
cracking ceases. To do so, we proceed just as in the elastic
analysis; i.e., we suppose that cracking has ceased and then
check the stress at the next instant to see if the tensile

20
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Figure 6. Stress profiles up to the time of
initial cracking in a bilinear solid.
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cutoff has been exceeded. In region BCED V is given by I
Eq. (16), and if cracking were to cease somewhere along FE,

then to the left of the crack Eq. (16) would continue to hold

across the remaining part of EF. Since CE is given by

t + x/cu = 3.75 to we find from Eq. (16) that along CE

Euf'(t'X/cU) - _ (1-y) 2 (375to-2x/Cu (20)-/

CuPo 2y 47yt 0

As long as cracking continues the value of the spike in g'

on FE is simply that which, when combined with the f' above

per Eq. (7) gives atco" If cracking were to cease at some

poi;ft along FE, then at the next instant on FE a bit to the

left g' would be the same out f' in Eq. (20) would have

decreased (since x decreased), so the stress per Eq. (7)

would have become more tensile. But the tensile limit can-

not be exceeded, so a contradiction is reached and we con-

clude that cracking must proceed at least as far as point E.

To see if cracking goes further, we must find a new f'

for region DEJ. This follows from the reflection at x = 0

of g' for BCED as given by Eq. (18), and in fact f'(t) will

be given by the same formula as g'(t) in Eq. (18). Thus on

EJ

E u' (t-x/cU)= (1-y)2 i (l-Y) 2(3.75t 0 -2x/cu)

CuPO 2Y(I+y) 2(i+y)t 0

Because this decreases when x decreases, the Aamo re-.soning

as before leads to the conclusion that cracking must continue.

Therefore the rest of the bar becomes continuously cracked,

so that when the leading wave front has returned to the loaded

face at t = 3.75 to, the only part of the slab that remains

intact is the original spalled layer from x 2c t0 to 2.5 c~ to.

22
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The stresses in this part are periodic in time and can be

obtained by reflections of f' from Eq. (16).

Stress profiles on an expanded stress scale are shown in

Figure 7 for times after the first crack, and stress histories

are shown in Figure 8 for several locations. The characteris-

tic plane is redrawn in Figure 9 for reference from Figure 8.

We now turn to the finite impulse cracking criterion, in

which case the tensile spike caused by the first crack will

not have any effect on subsequent cracking. In the numerical

example all the results below the characteristic CFEJ in
Figure 5 are still valid, as are those in the initial spalled

zone between x = 2ck t and 2.5 cZto. The left-hand face of the

first crack now may be treated as a new free surface. With

reference to the characteristic plane as redrawn in Figure 10,

in zone FHK f' will come from zone BCED [Eq. (16)], and g'

will be the reflection of this at x = 2ct 0 , giving

E ' 1(t) l-, (1-y)(t-2t 0)

CE o ) 2y 2t[

uo0

(l-y) x 2 (21)
PO 2 cZt

Directly on FK g' will be a spike with value just sufficient

to have caused the first crack. For the numerical values

chosen this is given by Eug'FK/cuPO = 11/32. By comparison

with the elastic case of Figure 2b, the proper interpretation
is that this value continues to propagate along FK and beyond,

even after subsequent cracks have appeared. The next crack

forms when the stress given by Eq. (21) reaches atco' and

this will be at x =1.5 c to and t = 3tO.
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A third and final crack will similarly appear at x c =

and t = 3.25 to0 reflections from its left-hand face not being

sufficient to exceed the tensile cutoff at any later times.

The stress in the new spalled zones and that to the left of

the last crack can be found by the methods already discussed.

Profiles are shown in Figure 11 and stress histories in Fig-

ure 12. Formulas for the stresses are summarized in Table 1.

Note that in Figure 11 there are times and places where the

stress at a crack or at the free surface appears not to van-

ish. This is not in contradiction with the requirement that

these surfaces be stress-free; rather, the Profiles represent

* the situation just before a sharp pulse reflects from a free

surface.
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TABLE 1. FORMULAS FOR STRESS

Region *axt)P

OAB I-t + (1+y )/2

KH, QR.. (1-Y) t2 (- 5

BEPT -~ + I*+XŽ: [i±-T +

*~~~~~ Se2iue ,9 0

**J =) t/t,) t /c

CF ,GM ..--- ) 2 5t /

31



V. SUMMARY

This report has focused on analytic solutions for stress

pulse propagation and reflection and tensile cracking in a

slab of one-dimensionai bilinear material with a tensile cut-

of f stress. To aid in the interpretation of events subse-

quent to the formation of the first crack, guidance has been

sought from the analogous problem in an elastic mnedium. There

it was found tnat after reflection from the free surface, tri-

angular stress pulses of the same height but successively

shorter rise times all cause an initial tensile crack at the

same location. If a finite tensile impulse is required for

cracking, then for sufficiently short rise times (including

zero) a narrow tensile spike forms at the reflected wave

front ahead of the first crack and propagates back toward

the loaded surface without affecting subsequent cracking,

even though it exceeds the tension cutoff in magnitude. A

broadened tensile pulse that increases linearly from the

first crack to the reflected wave front can cause another

crack a finite distance from the first when the tensile

amplitude builds to a level exceeding the tensile cutoff.

If, on the other hand, only a simple tensile limit need

be exceeded but no finite impulse is required for cracking,

then the first crack forms as before. The tensile spike

tries to form but immediately causes a new crack an infini-

tesimal distance from the first. A continuously cracked

region thus develops ahead of the first crack.

The most important result of the elastic analysis is

that in t-he limit of vanishing rise time, the first crack

causes a tensile spike of vanishing width to appear at the

reflected wave front. This interpretation has been used

to aid in studying the cracking caused by a sharp-fronted

triangular pulse in a bilinear material with either a finite
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impulse or simple tension cutoff criterion. The propagation

and reflection can be treated analytically and in closed form

provided the rise time vanishes. Events leading up to the

first crack differ from the elastic case in that the pulse

changes shape and dissipates energy as it propagates, but

share with the elastic case the feature of tensile stress

development only after reflection from the free face. The

qualitative features of initial crack formation and subse-

quent crack pattern~ development are exactly as mentioned

above for the elastic case. In particular, a discrete set

of cracks appears under the finite impulse criterion, comn-

pared with a continuously cracked zone under the simple

tensile cutoff criterion.

Because the solution is exact, it may be used to check

numerical codes for their ability to model two critical fea-

tures of constitutive laws for geological materials, viz.,

hysteresis and tensile cracking behavior. In particular,

parametric studies of the effects of zone size and linear

and quadratic artificial viscosity may be performed. For

the simple tensile cutoff cracking model, the desired numner-

ical solution would contain no spurious cracking in the early

stages, and then a seguence of adjacent cracked zones between

the first crack and the reflected wave front. of course, the

stress histories of Figure 8 and the profiles of Figures 6

and 7 should be reproduced as well.

Due to the large amount of hysteresis in the assumed

material, the pulse amplitude will have decayed substanti-

ally before cracking begins. To provide a more definitive

check of the tensile cracking feature of a code it may be

advisable to start the calculation just prior to initialJ

crack formation. Most codes would ask for initial displace-

ments and velocities as input, and some additional algebra

would be required to obtain these from the derived solution.
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velocities at any chosen initial time follow simply from

Eq. (6), i.e.,

u(x,t) = t' (t-x/c u + g' (t+x/c U) (22)

and the appropriate functions f' and g' can be found by

referring to the characteristic plane in Figure 5 and the

formulas in the text. Displacements, however, must be

obtained by integrating Eq. (22) from the arrival time of

the incident wave front at t - x/c X up to the chosen time.

Again, Figure 5 will aid in determining which formulas to

use for P' and gin.

Future analytical work suggested by the current study

is the derivation of closed-form solutions for similar prob-

lems in media with more elaborate tensile behavior. Various

models for rate-dependent tensile cracking or spall damage

accumulation have been put forth and incorporated into numer-

ical codes, but check cases appear to be unavailable. These

models have the effect of precluding instantaneous crack

formation in favor of a stress-dependent accumulation of

damage in the form of void space or distributed cracks.

As such, they require a finite tensile impulse for a full

crack to develop, although the cracking criterion is not

phrased in terms of impulse, nor is the impulse required

necessarily a constant. Development of analytical solu-

tions for simple problems in such media would provide

valuable check cases for codes incorporating this type of

material behavior.
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*As a check case for numerical studies of tensile cracking in non-
linear media, closed form solutions have been derived for the fol-
lowing problems. A finite slab of bi'linear material is loaded on
one face by a sharp-fronted triangular pressure pulse. Cracks are
assumed to form in the first case when the stress exceeds a tensile
limit, and in the second case when the stress exceeds a tensile limit
for a finite time, i.e., the tensile impulse is finite. In both cases
the stress reaches the tensile limit and a first crack forms shortly
after the incident wavefront reflects from the free face of the
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the action of a tensile spike caused by the first crack. In the
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